SC2004A is an intelligence LCD module design to ease project development that requires a LCD display. Its RS232 interface board receives and interpret serial data and output the data to the LCD display accordingly. SC2004A works with any host controller with serial UART port.

SC2004A Features
- RS232 or serial TTL interface
- Controllable LED backlight brightness
- 85 Bytes UART receive buffer eliminates delay requirement between commands
- Bar graph drawing commands
- 20 messages storage for easy retrieval, each 20 characters wide.
- Large Numbers Display Function
- 8 GPIOs individually configurable as input or output.
- 4x4 Keypad Interface
- 2 Analog Inputs (0 to 5V range)
- 8 User’s Define Characters
- Programmable baud rate 9600/19200 bps
- 9 to 12VDC Power Supply

Display Option Available
1. SC2004A-YG Dark Characters on Yellow Green LED backlight
2. SC2004A-B White Characters on Blue LED backlight
3. SC2004A-W Dark Characters on White LED backlight

Fig 1. SC2004A-YG

Fig 2. SC2004A-B

Fig 3. SC2004A-W

Fig 4. Optional Aluminum Panel Mounting Plate
Connecting SC2004A

Fig 4: SC2004A Back View

Fig 5. GPIO / Keypad Connector

Fig 6. Communication Port

Fig 7. Mating Connector for P1/P2 (Molex C-Grid 0.1”)

Fig 8. Connection to RS232 DB9 Connector

Fig 9. Optional Accessories: RS232 Cable

Communication
Communication with SC2004 is through its UART serial port either RS232 or TTL interface.
8 data bits, no parity, 1 stop bit (8,N,1)
Baud rate is programmable to 9600* bps or 19200 bps. * Factory default

Displaying texts
SC2004A displays whatever characters it receives from the serial port, starting from the top left corner. Supported internal characters is listed in Table 1.
Table 1. Supported Characters

<table>
<thead>
<tr>
<th>Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x08</td>
<td>Backspace</td>
</tr>
<tr>
<td>0x0B</td>
<td>Cursor Home</td>
</tr>
<tr>
<td>0x0C</td>
<td>Next Line</td>
</tr>
<tr>
<td>0x0D</td>
<td>Clear Screen</td>
</tr>
<tr>
<td>0x0E</td>
<td>Cursor Left</td>
</tr>
<tr>
<td>0x0F</td>
<td>Cursor Right</td>
</tr>
</tbody>
</table>

Text Display Example
To display

| LCD Demonstration | 4 \div 2 = 2 |

Send: “LCD Demonstration”, 0x0C, 0x34,0x20, 0xFD, 0x20, 0x32, 0x3D,0x32
Total: 25 Bytes
User’s Defined Characters

Apart from the character set listed in Figure 11, 8 memory spaces are reserved for user’s defined characters. Each custom character is 5 x 8 pixels matrix represented by 8 bytes of data.

![Figure 10: Example of a Custom Character](image)

Custom character above is represented by 0x04, 0x06, 0x07, 0x04, 0x04, 0x04, 0x04, 0x1F

Custom characters can be defined by sending command 0xFE, 0x64, [8 Bytes x 8 Bytes Custom Characters Bitmap]

Before these custom characters can be displayed, it must be loaded to the LCD memory. This is done by command 0xFE,0x08. Send 0x00 through 0x07 to display custom character 0 to 7 respectively.

Note : Graph drawing command shares the same bitmap memory with custom characters on the LCD. Thus, both cannot be used simultaneously.

Cursor Control

Cursor is the indicator of the current position on the LCD where the character is to be displayed. By default, the cursor is hidden. To turn it on send command 0xFE,0x01 for underline type cursor or 0xFE,0x02 for block blinking type of cursor.

To hide it, send command 0xFE,0x03

![Figure 11. Row and Column Positions](image)

Cursor can be moved to any position on the screen by command 0xFE,0x32,[row number],[column number]

Example: to move cursor to row 2, column 10 0xFE,0x32,0x02,0x0A

Delete row

Texts on any row can be cleared by command 0xFE,0x2D,[row number]

Cursor is moved to the beginning of the selected row after execution of this command

Delete column

Texts on any row can be cleared by command 0xFE,0x2E,[column number]

Cursor is moved to the next column at row 3 after execution of this command
LED Backlight Control
The backlight is turn on by command 0xFE,0x06 and turn off by command 0xFE,0x07
Brightness is control with command 0xFE,0x28, [Brightness level]
Where brightness level = 50 min, 250 max
Backlight is turn on when the module is powered up.

Texts Messages Storage
20 memory locations is reserved for storage of commonly used messages. Each is 20 characters wide.
Messages can be programmed by user with the command
0xFE, [memory location address] , [20 bytes texts including spaces]
Where memory location address is 0xC8 (200 Decimal) for location 0 and 0xDB (219 Decimal) for location 19 respectively.
Messages is retrieved and displayed with command
0xFE,0x34,[row number where text to be displayed] , [memory location address 0 to 19]

Big Numbers
SC2004 is capable of drawing 4 big numbers each spanning 4 rows by 4 columns.
Initialize big numbers command must be issued before this command can be used. 0xFE , 0x08
Draw big numbers command is 0xFE, 0x63 , [4 digits ASCII numbers].
Supported numbers are 0 to 9 and space (0x20)

Figure 12 : Draw Big Numbers Example

Analog Ports

0-5VDC	AN 1
0-5VDC	AN 2
	COM

Analog 1 & 2 measure voltage of 0 to 5V.

Read Analog 1
Command: 0xFE, 0x0B
Response: 0xFA, [ADC Value MSB], [ADC Value LSB]

Read Analog 2
Command: 0xFE, 0x0C
Response: 0xFB, [ADC Value MSB], [ADC Value LSB]

ADC value is 1024 if input is 5V
Bar Graph

Graph can be drawn from left to right or right to left. The starting point of the graph is the current cursor position. Initialize horizontal graph command (0xFE,0x04) must be issued before this command can be used. In the example in Figure 15, the starting point of the graph is at column 10.

![Figure 13: Horizontal Bar Graph](image)

To draw the graph at row 0, first set the cursor to row 0, column 10. Then issue the draw left to right graph command
0xFE, 0x2B, [length of the graph, in this case 26]
The maximum length of the graph depends on the starting position of the graph. In the example above, maximum length is 50.
If a new graph is drawn over the existing graph, the existing graph will not be automatically override. This is OK if the new graph length is greater than the existing one. However, if the new graph is shorter in length, the graph must be erase first before a new graph is drawn.
Ensure that cursor position is set to the beginning of the graph first.

![Figure 14: Vertical Bar Graph](image)

Vertical bar graph can be drawn in any column with row 3 as bottom of the graph. Maximum height is 32
Before the vertical graph command can be used, initialize vertical graph command must be issued (0xFE, 0x05)
Vertical graph is draw by command
0xFE,0x33, [column number], [height]
Unlike horizontal graph, drawing a new graph over the existing one will automatically erase the existing graph first.

Note: Custom Characters, Horizontal graph, Vertical Graph and Big Numbers shares the same characters set. Thus, only one of them can be used at any one time.
GPIO on P2

IO Mode.
Each pin can be configured as input or output.

When configured as input, internal pull up resistor is activated.
When configured as output, each IO is capable of sinking or sourcing 20 mA of current at 5V.

Configure GPIO command

0xFE, 0x32 . [GPIO Direction]

Each bit in “GPIO Direction “ set the direction of the GPIO, where “1” set to output and ‘0” set to input.

To control GPIOs set as output use command

0xFE, 0x2F , [output]

“1” to set, “0” to clear. Bit on GPIO set as input will be ignored.

LCD will send

0xFC, 0x00 , [input]

when the input is activated.

(Switch pressed)

Keypad Mode

To set P2 header as keypad input, send command

0xFE, 0x30 , 0xFE

Keypress	Response Code
1 | 0xFC, 0xFE, 0xFF
2 | 0xFC, 0xEF, 0xFF
3 | 0xFC, 0xFF, 0xFE
A | 0xFC, 0xFF, 0xEF
4 | 0xFC, 0xFD, 0xFF
5 | 0xFC, 0xDF, 0xFF
6 | 0xFC, 0xFF, 0xFD
7 | 0xFC, 0xFB, 0xFF
8 | 0xFC, 0xBF, 0xFF
9 | 0xFC, 0xFF, 0xFB
C | 0xFC, 0x7F, 0xFF
* | 0xFC, 0xFE, 0xFF
0 | 0xFC, 0x7F, 0xFF
| 0xFC, 0xFF, 0xF7
D | 0xFC, 0xFF, 0x7F

Fig 15. Tact Switch Connection Example IO 1 configured as input

Fig 16. LED Connection Example IO 3 configured as output

Fig 17. Keypad Connection to P2
Changing the Baud Rate

9600 bps command 0xFE, 0x1E
19200 bps command 0xFE, 0x1F

Send save settings command. Baud rate will only be changed on the next power up cycle.

SC2004App Software

This software runs on Windows PC designed to test and configure SC2004.

Available for free from www.siliconcraft.net/download.htm

You can use it to create the custom characters, define the stored texts messages and test all the functionality of SC2004.

Hexadecimal code of all command sent to the LCD will be displayed along with all the responded code from the LCD.

Saving the user’s settings onto non-volatile Flash Memory

User’s setting :
- Backlight brightness level
- Custom Characters
- Texts Messages
- P2 Headers Functions
- Baud rate

Can be made permanent so that its retains the user’s setting even after the module is powered down.

To do this , send the save settings command after you have entered all your settings.

0xFE, 0x20

When settings is saved, the module response with 0xFE, 0x20,0x20 indicating successful save operation.

Figure 18: Communication Monitor from SC2004App Software

Electrical Specification

- **Power Supply:** 9 to 12VDC
- **Current consumption:**
 - Backlight Off: 25mA
 - SC2004A-YG: Max 300mA , Min 150mA
 - SC2004A-B/W: Max 50mA , Min 30mA
- **Operating Temperature:** 0°C to 50°C
- **Storage Temperature:** -10°C to 60°C
- **Viewing Direction:** 6 o’clock
- **Character size:** 2.95 x 4.75 mm
- **Dot Size:** 0.55 x 0.55 mm
- **Dot pitch:** 0.60 x 0.60 mm

- **Communication Interface:** RS232 / TTL
- **Maximum input voltage at TTL input:** 5.5V
- **Output High Voltage Level:** 5V
- **Maximum sink/source current at output pin:** 20mA
Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Code (Hexadecimal)</th>
<th>Code (Decimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cursor Home</td>
<td>0x0B</td>
<td>11</td>
</tr>
<tr>
<td>Move cursor to the beginning of the next</td>
<td>0x0C</td>
<td>12</td>
</tr>
<tr>
<td>row</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear LCD</td>
<td>0x0D</td>
<td>13</td>
</tr>
<tr>
<td>Cursor On (Underline)</td>
<td>0xFE , 0x01</td>
<td>254 , 1</td>
</tr>
<tr>
<td>Cursor On (Blinking)</td>
<td>0xFE , 0x02</td>
<td>254 , 2</td>
</tr>
<tr>
<td>Cursor Off</td>
<td>0xFE , 0x03</td>
<td>254 , 3</td>
</tr>
<tr>
<td>Initialize horizontal graph</td>
<td>0xFE , 0x04</td>
<td>254 , 4</td>
</tr>
<tr>
<td>Initialize vertical graph</td>
<td>0xFE , 0x05</td>
<td>254 , 5</td>
</tr>
<tr>
<td>Backlight On</td>
<td>0xFE , 0x06</td>
<td>254 , 6</td>
</tr>
<tr>
<td>Backlight Off</td>
<td>0xFE , 0x07</td>
<td>254 , 7</td>
</tr>
<tr>
<td>Initialize Custom Characters</td>
<td>0xFE , 0x08</td>
<td>254 , 8</td>
</tr>
<tr>
<td>Initialize Big Numbers</td>
<td>0xFE , 0x09</td>
<td>254 , 9</td>
</tr>
<tr>
<td>Read Analog 1 Value</td>
<td>0xFE , 0x0A</td>
<td>254 , 10</td>
</tr>
<tr>
<td>Read Analog 2 Value</td>
<td>0xFE , 0x0B</td>
<td>254 , 11</td>
</tr>
<tr>
<td>Set baud rate to 9600 bps</td>
<td>0xFE , 0x1E</td>
<td>254 , 30</td>
</tr>
<tr>
<td>Set baud rate to 19200 bps</td>
<td>0xFE , 0x1F</td>
<td>254 , 31</td>
</tr>
<tr>
<td>Save settings</td>
<td>0xFE , 0x20</td>
<td>254 , 32</td>
</tr>
<tr>
<td>Set Backlight Brightness</td>
<td>0xFE , 0x28 , [Level]</td>
<td>254 , 40 , [Level]</td>
</tr>
<tr>
<td>Draw horizontal graph (left to right)</td>
<td>0xFE , 0x2B , [length]</td>
<td>254 , 43 , [length]</td>
</tr>
<tr>
<td>Draw horizontal graph (right to left)</td>
<td>0xFE , 0x2C , [length]</td>
<td>254 , 44 , [length]</td>
</tr>
<tr>
<td>Clear selected row</td>
<td>0xFE , 0x2D, [row number]</td>
<td>254 , 45 , [row number]</td>
</tr>
<tr>
<td>Clear selected column</td>
<td>0xFE , 0x2E, [column number]</td>
<td>254 , 46 , [column number]</td>
</tr>
<tr>
<td>Set outputs</td>
<td>0xFE , 0x2F, [output value]</td>
<td>254 , 47 , [output value]</td>
</tr>
<tr>
<td>Set P2 as GPIO</td>
<td>0xFE , 0x30, 0xFF</td>
<td>254 , 48 , 255</td>
</tr>
<tr>
<td>Set P2 as Keypad Inputs</td>
<td>0xFE , 0x30, 0xFE</td>
<td>254 , 48 , 254</td>
</tr>
<tr>
<td>Set cursor position</td>
<td>0xFE , 0x32, [row number], [column number]</td>
<td>254 , 50 , [row number], [column number]</td>
</tr>
<tr>
<td>Command</td>
<td>Code (Hexadecimal)</td>
<td>Code (Decimal)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Draw Vertical Graph</td>
<td>0xFE, 0x33, [column number], [height]</td>
<td>254, 51, [column number], [height]</td>
</tr>
<tr>
<td>Print stored texts on selected row</td>
<td>0xFE, 0x34, [row number], [memory location]</td>
<td>254, 52, [row number], [memory location]</td>
</tr>
<tr>
<td>Print big numbers</td>
<td>0xFE, 0x63, [4 bytes ASCII numbers]</td>
<td>254, 99, [4 bytes ASCII numbers]</td>
</tr>
<tr>
<td>Define Custom Characters</td>
<td>0xFE, 0x64, [64 Bytes Bitmap Data]</td>
<td>254, 100, [64 Bytes ASCII Bitmap Data]</td>
</tr>
<tr>
<td>Defines texts messages</td>
<td>0xFE, [memory location], [20 Bytes text message]</td>
<td>254, [memory location], [20 bytes text message]</td>
</tr>
</tbody>
</table>

Figure: 19: Mechanical Dimension (units in mm)

Maximum height: 27 mm
Figure 20: Mounting Kit dimension (units in mm) Thickness: 1.5 mm